

*fib***-course on "UHPC materials and structures"**

Challenging concrete structures for the low carbon society

27 August 2024, Budapest

Akio KASUGA

Sumitomo Mitsui Construction

Should we go back to the Roman concrete?

 \checkmark Invention 1, Portland Cement : 1824 (UK)

- \checkmark Invention 2, Reinforced Concrete : 1867 (F)
- \checkmark Invention 3, Prestressed Concrete : 1936 (F, D)

Pantheon (Rome, BC25)

History of non-metallic bridges

1. 1st generation non-metallic bridges (1984 -)

History of non-metallic bridges

fib course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

Aramid FRP for prestressing tendons

 \checkmark Technora $\mathrm{^{\copyright}}$ by Teijin has alkali resistance.

Aramid fiber **Aramid FRP rods & strand**

1 st generation non-metallic bridges

Pre-tension beams (Non-metallic bridge)

Post-tension beam (Nom-metallic tendon)

1 st generation non-metallic bridges

 \checkmark Development of non-metallic structure targeted for maglev train.

Temporary steel anchorage for AFRP tendons

 \checkmark AFRP is anchored by bond stress with high strength non-shrink mortal.

Temporary steel anchorages

Non-metallic bridge (post-tension beam)

 \checkmark Epoxy-coated steel re-bars and AFRP internal and external tendons

L=25.0m

10 *fib* course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

Non-metallic bridge (pre-tension beam)

\checkmark All reinforcing materials are AFRP.

 \checkmark But cost was 2.5 times[!] Then 1st generation non-metallic bridge was suspended.

28 years old beam (2018)

Load bearing capacity test (2018)

 \checkmark 28 years old beam performed very well.

Load VS Deflection

In the future

We still have two specimens for 2040 and 2090.

2. Evolution of materials and structures (2001-)

Butterfly web and fibre reinforced concrete

History of non-metallic bridges

Conceptual design of butterfly web bridge

 \checkmark Butterfly webs can make structures lighter.

Structural behavior of butterfly web bridge

 \checkmark Structural behavior of butterfly web = Double Warren Truss

A series of tests for butterfly web (steel panel)

- \vee Confirmation of fractural mode
- \checkmark Establishment of design method

Material properties of HPC (concrete panel)

No special materials are used.

- f_{ck} = $\underline{\text{80MPa}}$ concrete base
- More than 2000N/mm² tensile strength steel 0.5% content in volume $D = 0.2$ mm, $L = 22$ mm steel fiber

Flexural strength test of prestressed concrete beam

Beam test of HPC butterfly panels

Results of beam test

- \checkmark Shear capacity can be designed by the ordinal design method.
- \checkmark Developed detail provided required strength.

Takubogawa Bridge (2013)

24 *fib* course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

Conventional box girder VS new structure

Prefabrication of butterfly web panels

Pretension steel strands Butterfly panels

Cantilevering construction

Inside view

Easy maintenance!

28 *fib* course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

Takubogawa Bridge (2013)

Achievements of butterfly web bridges

Bessodani Bridge (2020)

Nakatsugawa Bridge (Under construction)

Okegawa Viaduct (2015)

 \checkmark Bridge deck area : 35,000 m² = 18 months construction time

Mukogawa Bridge (2017)

 \checkmark Extradosed bridge with butterfly web

SUMITOMO MITSUI CONSTRUCTION

Nakatsugawa Bridge (under construction)

Nakatsugawa Bridge (under construction)

 \checkmark Large size butterfly web

34 *fib* course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

Nakatsugawa Bridge (under construction)

3. 2nd generation non-metallic bridges (2010 -)
History of non-metallic bridges

Joint research with NEXCO West (2010 -)

Requirements

- 1.5 times of initial cost. $($ < Maintenance cost is 2 to 2.5 times of initial cost)
- Minimum life cycle cost. (= Almost no maintenance)

Different situation from 1G

- Fiber reinforced concrete has been available. (= No re-bar in concrete)
- Development of light weight structure. (= Butterfly web)

Concept of the highly durability of concrete bridge

 \checkmark Construction cost is within 1.5 times of that by conventional technology.

Fatigue test of upper deck (wheel running test)

Fatigue test of upper deck (wheel running test)

41 *fib* course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

Results of wheel running test

- \checkmark No crack, no opening of the Joint
- \checkmark No damage after equivalent 100-year loading
- \checkmark Same performance as ordinary prestressed concrete deck slabs

SUMITOMO MITSUI CONSTRUCTION

2 nd generation non-metallic bridge (2015)

Two years temporally bridge (L=14m)

Prefabrication

Fabrication of web Fabrication of upper deck

Bessodani Bridge (2020)

 \checkmark 1st in the world as a highway non-metallic bridge

Bessodani Bridge (2020)

Prefabrication of butterfly web Installation of segment pretensioned by aramid FRP

Inside view

Rehabilitation by non-metallic concrete deck

- \checkmark Refurbishment by non-metallic concrete deck
- \checkmark Non-metallic concrete deck with Polyvinyl alcohol fiber 1% content in volume

Highway bridge deck rehabilitation

- \sqrt{R} RC slab is heavily deteriorated by deicing salt.
- \checkmark 60-year reinforced concrete slab is replaced to precast prestressed concrete slab.

Tadeno-daini Bridge (2021)

Prefabrication of Dura-slab pretensioned aramid FRP

Non-metallic concrete barrier

 \checkmark Non-metallic Concrete Barrier with Polyvinyl alcohol fiber

4. CO² emissions in the use stage

CO² emission in construction supply chain

52 *fib* course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

Deterioration of concrete structures in the use stage

- \checkmark 60-year-old concrete RC slabs are being renewed at <u>a cost two to four times</u> of the original construction cost.
- \checkmark Deterioration of the rebar generates maintenance costs and emits $CO₂$ emissions during intervention.

Highway bridge deck rehabilitation

 \checkmark Intervention is a construction operation and affects social activities in the surrounding area.

https://www.kozobutsu-hozen-journal.net/news/13171/

CO² emissions in intervention

CO² emissions due to impact on social activities

CO² emissions due to impact on social activities

Construction period vs. CO² emissions

1) Haist, M.; Bergmeister, K.; Fouad, N.A.; Curbach, M.; Deiters, M.V.; Forman, P.; Gerlach, J.; Hatzfeld, T.; Hoppe, J.; Kromoser, B.; Mark, P.; Müller, C.; Müller, H.S.; Scope, C.; Schack, T.; Tietze, M.; Voit, K.: Nachhaltiger Betonbau - Vom CO2 - und ressourceneffizienten Beton und Tragwerk zur nachhaltigen Konstruktion; In: Bauphysik-Kalender, Schwerpunkt: Nachhaltigkeit, Fouad, Nabil A. (Eds.), Ernst & Sohn, Berlin, 2023, pp. 259-363

4)Deutscher Beton- und Bautechnik-Verein e. V. (2015) Beispiele zur Bemessung nach Eurocode 2, Band 2: Ingenieurbau, 1. Auflage. Berlin: Ernst & Sohn.

5)Lange, M.; Hendzlik, M.; Schmied, M. (2020) Klimaschutz durch Tempolimit – Wirkung eines generellen Tempolimits auf Bundesautobahnen auf die Treibhausgasemissionen in: Texte/Umweltbundesamt 38/2020, Dessau- Roßlau: Umweltbundesamt

CO² emission in construction supply chain

59 *fib* course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

5. Towards low carbon concrete structures

CO² emission in construction supply chain

61 *fib* course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

- 1. Carbon emissions can be reduced up to 70%.
- 2. Maximum strength of 150 MPa can be achieved without steam curing.
- 3. Drying shrinkage is extremely small at around 100μ**.**
- 4. Creep is small at one-third that of conventional concrete.
- 5. Heat generated during hardening is $30 40^{\circ}$ lower than conventional concrete.
- 6. Mixing water can be cut by about half.

 \checkmark Low carbon concrete up to 70% CO₂ emissions

 \checkmark Material-derived cracking factors can be reduced.

 \checkmark Ultra low creep \rightarrow Possibility of reduction of prestressing tendons

Zero cement concrete + non-metallic reinforcements

 \checkmark Zero cement concrete + aramid pretension tendons

- \checkmark Low carbon concrete with low pH value is advantageous for FRP.
- \checkmark Suitable for precast due to slow strength development. (CO₂ emission during steam curing)
- \checkmark Possibility of mixing with seawater.

Evolution of 2nd generation non-metallic bridge

Non-metallic & zero cement bulb tee girder (L=37m)

CO² emissions of bridge elements and components

69 *fib* course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

Conventional Bridge; $tCO₂ = 174tCO₂$

Low Carbon Bridg; tCO ₂ = 70tCO₂

Lifecycle profile and deterioration curve of concrete deck

Conservation scenario of Indiana, US

Estimation of LCA

82% reduction

- \checkmark Stage A; Material production & construction stage
- \checkmark A1-A3; Material production stage
- \checkmark A1-A5; Construction stage
- \checkmark Stage B; Use stage
- \checkmark Stage C; End of life stage
- \triangleright Arifa Z. Kasuga A. LCA of a challenging low carbon ultra-high durability non-metallic bridge. Proceedings of the *fib* Congress, Oslo. pp 2100-2109, 2022

Back to the Roman concrete with modern technology

?

Pantheon (Rome, BC25)

130 MPa concrete without Portland cement & aramid FRP tendons

Roadmap to Carbon Neutrality for *fib* **Members**

 \checkmark CO₂ emissions due to new construction and intervention of existing structures

Conclusions

- 1. To reduce future maintenance, non-metallic bridge was developed by new technologies of butterfly web and fiber reinforced concrete.
- 2. Fatigue performance of non-metallic deck is sufficient for more than 100-year service.
- 3. The proposed structure has performance which can meet required design criteria.
- 4. Non-metallic technology makes the structure durable and leads to minimum life cycle cost. This is a sustainable solution.
- 5. Action is required to reduce $CO₂$ emissions as quickly as possible using the technology available today.

fib course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024