

fib-course on "UHPC materials and structures"

Challenging concrete structures for the low carbon society

27 August 2024, Budapest

Akio KASUGA

Sumitomo Mitsui Construction

Should we go back to the Roman concrete?

✓ Invention 1, Portland Cement : 1824 (UK)

- ✓ Invention 2, Reinforced Concrete : 1867 (F)
- ✓ Invention 3, Prestressed Concrete : 1936 (F, D)

Pantheon (Rome, BC25)

History of non-metallic bridges

1. 1st generation non-metallic bridges (1984 -)

History of non-metallic bridges

fib course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

Aramid FRP for prestressing tendons

✓ Technora[©] by Teijin has alkali resistance.

Aramid fiber

Aramid FRP rods & strand

1st generation non-metallic bridges

Pre-tension beams (Non-metallic bridge)

Post-tension beam (Nom-metallic tendon)

1st generation non-metallic bridges

 \checkmark Development of non-metallic structure targeted for <u>maglev train</u>.

Temporary steel anchorage for AFRP tendons

✓AFRP is anchored by bond stress with high strength non-shrink mortal.

Temporary steel anchorages

Non-metallic bridge (post-tension beam)

✓ Epoxy-coated steel re-bars and AFRP internal and external tendons

L=25.0m

fib course on UHPC materials and structures / fib PhD Symposium Budapest / 27 August 2024

Non-metallic bridge (pre-tension beam)

✓ All reinforcing materials are AFRP.

✓ But cost was <u>**2.5 times**</u>! Then 1^{st} generation non-metallic bridge was suspended.

28 years old beam (2018)

Load bearing capacity test (2018)

 \checkmark 28 years old beam performed very well.

fib course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

In the future

 \checkmark We still have two specimens for 2040 and 2090.

2. Evolution of materials and structures (2001-)

Butterfly web and fibre reinforced concrete

History of non-metallic bridges

Conceptual design of butterfly web bridge

 \checkmark Butterfly webs can make structures lighter.

fib course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

Structural behavior of butterfly web bridge

Structural behavior of butterfly web = Double Warren Truss

A series of tests for butterfly web (steel panel)

- Confirmation of fractural mode
- Establishment of design method

Material properties of HPC (concrete panel)

No special materials are used.

- $f_{ck} = 80MPa$ concrete base
- More than 2000N/mm² tensile strength steel 0.5% content in volume D = 0.2mm, L = 22mm steel fiber

Name	Steel Fiber		Slump	W/B	Content (kg/m ³)				
	sort	volume	(cm)	(%)	W	С	SF	S	G
SW	SW	0.50%	20±2.0cm	25	175	630	70	408	596

Flexural strength test of prestressed concrete beam

Displacement (mm) Displacement (mm)

Beam test of HPC butterfly panels

Results of beam test

- \checkmark Shear capacity can be designed by the ordinal design method.
- ✓ Developed detail provided required strength.

Takubogawa Bridge (2013)

fib course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

Conventional box girder VS new structure

Prefabrication of butterfly web panels

Pretension steel strands

Butterfly panels

Cantilevering construction

Inside view

Easy maintenance!

fib course on UHPC materials and structures / fib PhD Symposium Budapest / 27 August 2024

Takubogawa Bridge (2013)

Achievements of butterfly web bridges

Bessodani Bridge (2020)

Nakatsugawa Bridge (Under construction)

Okegawa Viaduct (2015)

✓ Bridge deck area : 35,000 m² = 18 months construction time

Mukogawa Bridge (2017)

✓ Extradosed bridge with butterfly web

SUMITOMO MITSUI CONSTRUCTION

Nakatsugawa Bridge (under construction)

fib course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

SUMITOMO MITSUI CONSTRUCTION

Nakatsugawa Bridge (under construction)

✓ Large size butterfly web

fib course on UHPC materials and structures / fib PhD Symposium Budapest / 27 August 2024

SUMITOMO MITSUI CONSTRUCTION

Nakatsugawa Bridge (under construction)

3. 2nd generation non-metallic bridges (2010 -)
History of non-metallic bridges

Joint research with NEXCO West (2010 -)

> Requirements

- <u>1.5 times</u> of initial cost. (< Maintenance cost is <u>2 to 2.5 times</u> of initial cost)
- Minimum life cycle cost. (= Almost no maintenance)

Different situation from 1G

- Fiber reinforced concrete has been available. (= No re-bar in concrete)
- Development of light weight structure. (= Butterfly web)

Concept of the highly durability of concrete bridge

 \checkmark Construction cost is within <u>1.5 times</u> of that by conventional technology.

Fatigue test of upper deck (wheel running test)

Fatigue test of upper deck (wheel running test)

fib course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

Results of wheel running test

- ✓ No crack, no opening of the Joint
- ✓ No damage after equivalent 100-year loading
- ✓ Same performance as ordinary prestressed concrete deck slabs

SUMITOMO MITSUI CONSTRUCTION

2nd generation non-metallic bridge (2015)

Two years temporally bridge (L=14m)

SUMITOMO MITSUI CONSTRUCTION

Prefabrication

Fabrication of web

Fabrication of upper deck

Bessodani Bridge (2020)

 \checkmark 1st in the world as a highway non-metallic bridge

Bessodani Bridge (2020)

Prefabrication of butterfly web pretensioned by aramid FRP

Installation of segment

Inside view

Rehabilitation by non-metallic concrete deck

- ✓ Refurbishment by non-metallic concrete deck
- \checkmark Non-metallic concrete deck with Polyvinyl alcohol fiber 1% content in volume

Highway bridge deck rehabilitation

- RC slab is heavily deteriorated by deicing salt.
- ✓ 60-year reinforced concrete slab is replaced to precast prestressed concrete slab.

Tadeno-daini Bridge (2021)

Installation of panel

Prefabrication of Dura-slab pretensioned aramid FRP

Non-metallic concrete barrier

✓ Non-metallic Concrete Barrier with Polyvinyl alcohol fiber

4. CO_2 emissions in the use stage

CO₂ emission in construction supply chain

fib course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

Deterioration of concrete structures in the use stage

- ✓ 60-year-old concrete RC slabs are being renewed at <u>a cost two to four times</u> of the original construction cost.
- ✓ Deterioration of the rebar generates <u>maintenance costs and emits CO₂ emissions</u> during intervention.

Highway bridge deck rehabilitation

 \checkmark Intervention is a construction operation and affects social activities in the surrounding area.

https://www.kozobutsu-hozen-journal.net/news/13171/

CO₂ emissions in intervention

fib course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

CO₂ emissions due to impact on social activities

fib course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

CO₂ emissions due to impact on social activities

fib course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

Construction period vs. CO₂ emissions

1) Haist, M.; Bergmeister, K.; Fouad, N.A.; Curbach, M.; Deiters, M.V.; Forman, P.; Gerlach, J.; Hatzfeld, T.; Hoppe, J.; Kromoser, B.; Mark, P.; Müller, C.; Müller, H.S.; Scope, C.; Schack, T.; Tietze, M.; Voit, K.: Nachhaltiger Betonbau - Vom CO2 - und ressourceneffizienten Beton und Tragwerk zur nachhaltigen Konstruktion; In: Bauphysik-Kalender, Schwerpunkt: Nachhaltigkeit, Fouad, Nabil A. (Eds.), Ernst & Sohn, Berlin, 2023, pp. 259-363

4) Deutscher Beton- und Bautechnik-Verein e. V. (2015) Beispiele zur Bemessung nach Eurocode 2, Band 2: Ingenieurbau, 1. Auflage. Berlin: Ernst & Sohn.

5) Lange, M.; Hendzlik, M.; Schmied, M. (2020) Klimaschutz durch Tempolimit – Wirkung eines generellen Tempolimits auf Bundesautobahnen auf die Treibhausgasemissionen in: Texte/Umweltbundesamt 38/2020, Dessau- Roßlau: Umweltbundesamt

CO₂ emission in construction supply chain

fib course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

5. Towards low carbon concrete structures

CO₂ emission in construction supply chain

fib course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

- 1. Carbon emissions can be reduced <u>up to 70%</u>.
- 2. Maximum strength of <u>150 MPa</u> can be achieved without steam curing.
- 3. Drying shrinkage is extremely small at around $\underline{100\mu}$.
- 4. Creep is small at <u>one-third</u> that of conventional concrete.
- 5. Heat generated during hardening is 30 40 °C lower than conventional concrete.
- 6. Mixing water can be cut by about half.

 \checkmark Low carbon concrete up to 70% CO₂ emissions

 $\checkmark\,$ Material-derived cracking factors can be reduced.

✓ Ultra low creep → Possibility of reduction of prestressing tendons

Zero cement concrete + non-metallic reinforcements

✓ Zero cement concrete + aramid pretension tendons

- \checkmark Low carbon concrete with low pH value is advantageous for FRP.
- \checkmark Suitable for precast due to slow strength development. (CO₂ emission during steam curing)
- \checkmark Possibility of mixing with seawater.

Evolution of 2nd generation non-metallic bridge

fib course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024

Non-metallic & zero cement bulb tee girder (L=37m)

CO₂ emissions of bridge elements and components

fib course on UHPC materials and structures / fib PhD Symposium Budapest / 27 August 2024

Lifecycle profile and deterioration curve of concrete deck

Conservation scenario of Indiana, US

Estimation of LCA

	Lifecycle factor	tCO ₂				Whole life	tCO ₂
		Stage A		Stage B and Stage C	(A+B+C)	emission rate	reduction
		A1-A3 (80% of A)	A4-A5 (20% of A)			(tCO ₂ /m ³)	(%)
Conventional Bridge	Repair & Replacement	174	43	326 (1.5 times of A)	543	2.2	NA
Low Carbon Bridge	No Repair & Replacement	70	18	4.5 (12% of whole life emission)	100	0.4	82

82% reduction

- ✓ Stage A; Material production & construction stage
- ✓ A1-A3; Material production stage
- ✓ A1-A5; Construction stage
- ✓ Stage B; Use stage
- ✓ Stage C; End of life stage
- Arifa Z. Kasuga A. LCA of a challenging low carbon ultra-high durability non-metallic bridge. Proceedings of the *fib* Congress, Oslo. pp 2100-2109, 2022

Back to the Roman concrete with modern technology

Pantheon (Rome, BC25)

130 MPa concrete without Portland cement & aramid FRP tendons

Roadmap to Carbon Neutrality for *fib* **Members**

 \checkmark CO₂ emissions due to new construction and intervention of existing structures

Conclusions

- 1. To reduce future maintenance, <u>non-metallic bridge</u> was developed by new technologies of <u>butterfly web</u> and <u>fiber reinforced concrete</u>.
- 2. Fatigue performance of non-metallic deck is sufficient for more than 100-year service.
- 3. The proposed structure has performance which can meet required design criteria.
- Non-metallic technology makes the structure durable and leads to <u>minimum life cycle cost</u>.
 This is a sustainable solution.
- 5. Action is required to reduce CO₂ emissions <u>as quickly as possible</u> using the technology available today.

fib course on UHPC materials and structures / *fib* PhD Symposium Budapest / 27 August 2024